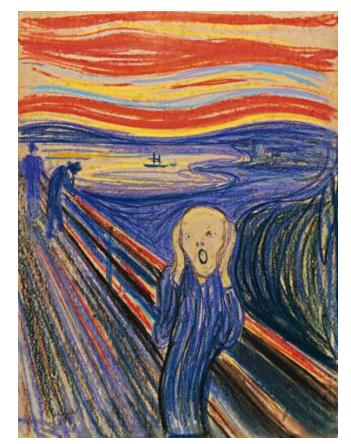
Evidence and Inference: Quantitative Literacy for Midcareer Journalists

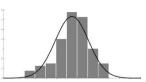
Jessica S Ancker, MPH, PhD, assistant professor, Weill Cornell Medical College

Weill Cornell Medical College


Nicholas Lemann, Dean, Columbia Journalism School

Evidence and Inference

- Advanced research techniques
- Gathering and assessing information
- Statistical literacy
- Cognitive/psychological biases
- Rigorous interviewing techniques
- Understanding the work of experts
- Locating material in historical archives and databases
- Testing assumptions and hypotheses
- Recognizing ways stories can distort the truth
- Making sure that reporting firmly proves its points


Columbia MA program

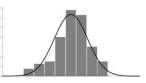
- Students:
 - Midcareer
 - PowerPoint-naive
 - Intense listeners/notetakers
 - Recognize value in topic
 - Uninterested in grades
 - Interested in defense and offense
 - Have never opened Excel
 - Math-phobes

Case example: Data distributions

Measure heart rates in class, captured in spreadsheet, graphs

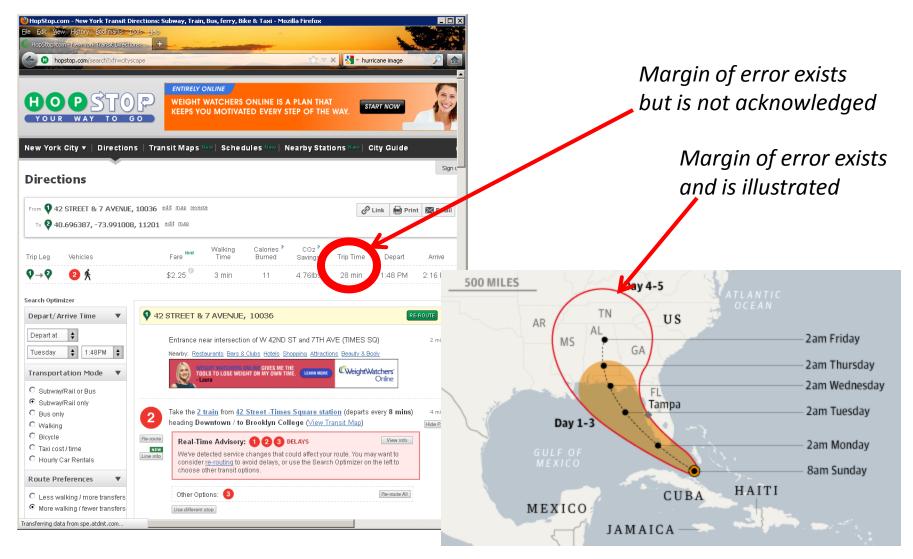
Case example: Data distributions

Measure heart rates in class, captured in spreadsheet, graphs



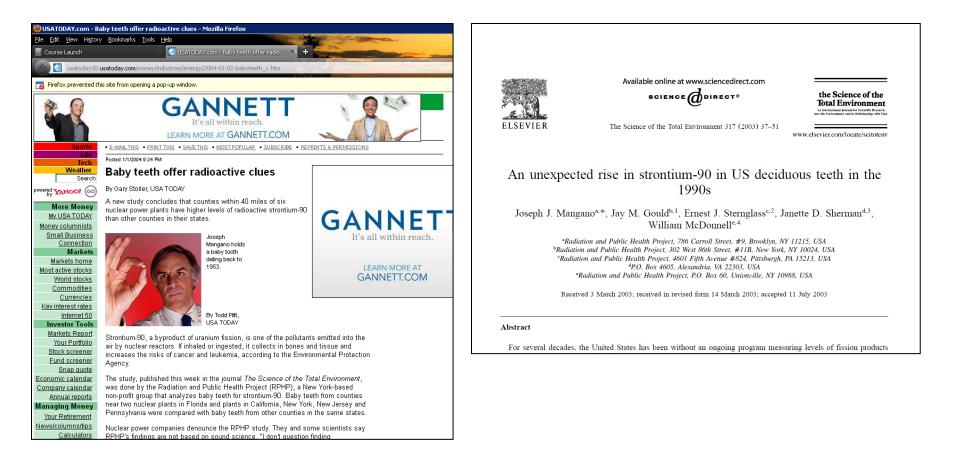
Case example: Data distributions

- Measure heart rates in class, captured in spreadsheet, graphs
- Income



• Malcolm Gladwell: "Million-dollar Murray"

Case example: Margin of error



Case example: Margin of error

"Mr. Obama is ahead in Florida by 49 percent to 46 percent and in Wisconsin by 49 percent to 47 percent — differences within the polls' margin of sampling error of plus or minus three percentage points."

 Cooper and Sussman, "In poll, Obama is given trust over Medicare," *The New York Times*, August 23, 2012

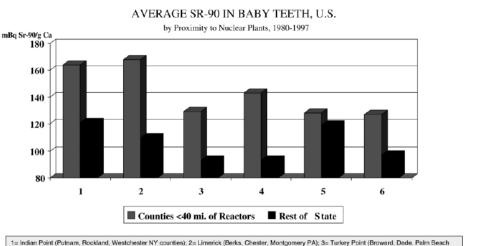
Case example: Article critique

Case example: Article critique

42

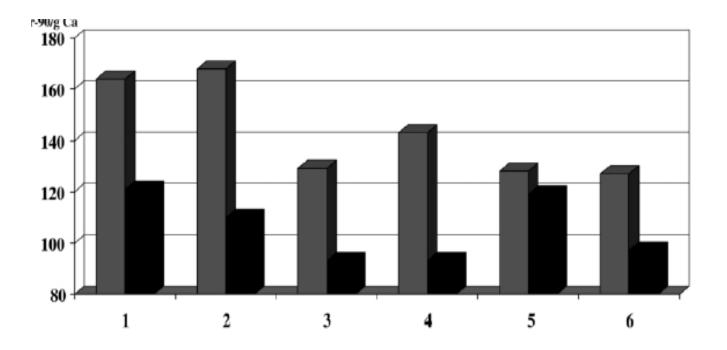
J.J. Mangano et al. / The Science of the Total Environment 317 (2003) 37-51

Table 4

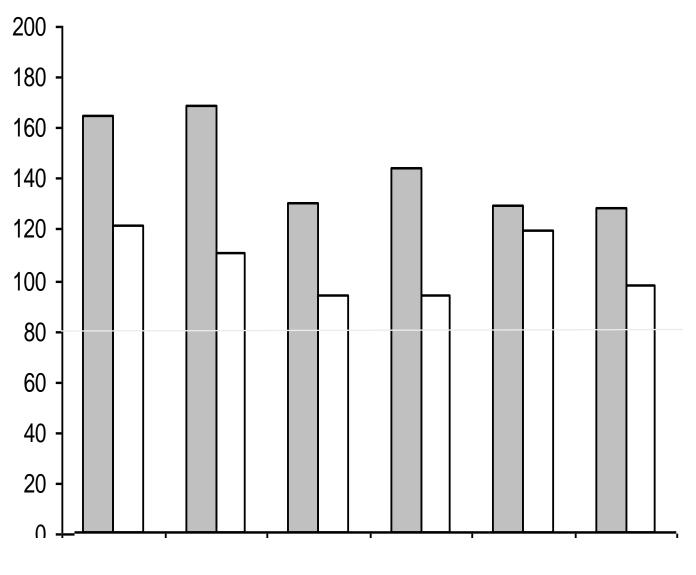

Average millibecquerels of Sr-90 per gram calcium in deciduous teeth (at birth) by proximity to nuclear power plants (persons born after 1979)

Nuclear power plant, location	Proximate counties	Average Sr-90 ^a (No. teeth)		% Difference
		Proximate	Other state	average Sr-90
Indian Point, Buchanan NY	Putnam, Rockland,	164 (217)	121 (317)	+35.8% P<0.001
(2 reactors, startup 1973, 1976)	Westchester, NY	±11	±7	
Limerick, Pottstown PA	Berks, Chester,	168 (98) ^ь	110 (32)	+53.2% <i>P</i> <0.03
(2 reactors, startup 1984, 1989)	Montgomery, PA	±17	±20	
Turkey Point, Florida City FL	Broward, Dade,	129 (350)	93 (24)	+38.6% P<0.08
(2 reactors, startup 1972, 1973)	Palm Beach, FL	±7	+20	
St. Lucie, Hutchinson Island FL (2 reactors, startup 1976, 1983)	Indian River, Martin, St. Lucie, FL	143 (97) ±15		AVE
Oyster Creek, Forked River NJ	Monmouth, Ocean, NJ	128 (169)	Avg. mBq Sr-90/g Ca	
(1 reactor, startup 1969)		±10	180	
Diablo Canyon, Avila Beach CA (2 reactors, startup 1984, 1985)	San Luis Obispo, Santa Barbara, CA	127 (50) ^ь ±19	160	

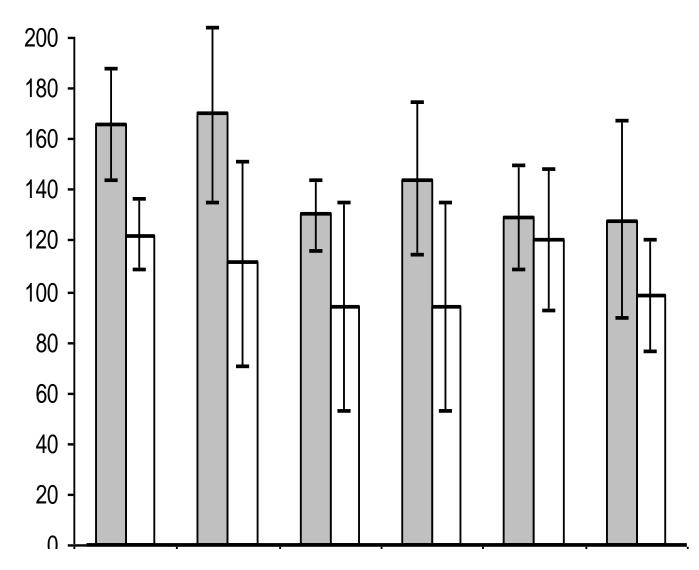
Counting error listed for each sample of teeth. See Appendix B for explanation of significance testing. *Source:* US Nuclear Regulatory Commission (www.nrc.gov), ob and startup dates.

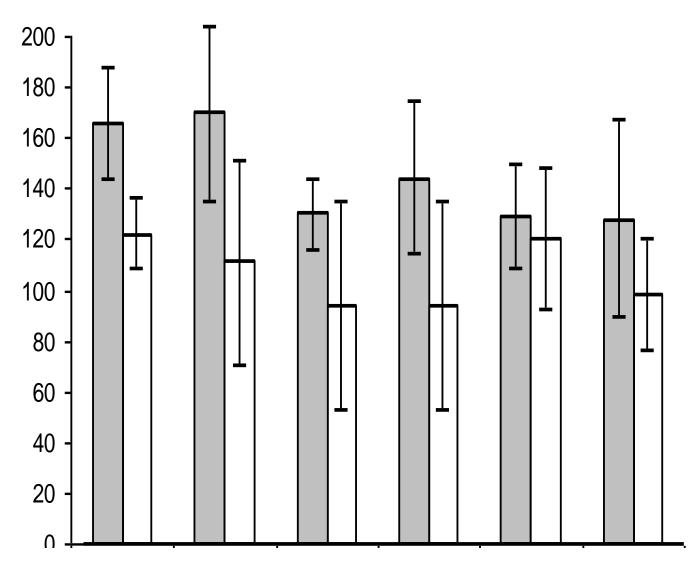

a Average millibecquerels of Sr-90 per gram of calcium.

^b In three counties near Limerick, 94 of 98 teeth were from persons born after startu Canyon, 47 of 50 teeth were from persons born after startup (average 135).



1= Indian Point (Putnam, Rockland, Westchester NY counties); 2= Limerick (Berks, Chester, Montgomery PA); 3= Turkey Point (Broward, Dade. Palm Beach FL); 4= SL Lucie (Indian River, Martin, SL Lucie FL); 5= Oyster Creek (Monmouth, Ocean NJ); 6= Diablo Canyon (Santa Barbara, San Luis Obispo CA). Differences significant at p<.05 for Indian Point, Limerick, SL Lucie.</p>


Fig. 1. Average Sr-90 in baby teeth, US, by proximity to nuclear plants (persons born 1980-1997).


The original graph (p. 42). The claim: Strontium levels were higher in children who lived within 40 miles of nuclear plants (gray bars) than in those who lived farther away (black bars).

If we fix the y axis, the bars will be proportionate

Sample data are merely estimates of population values. The 95% confidence intervals ("margins of error") show ranges for the population numbers that are compatible with the sample data, given the errors

Now we can see that in 3 of the 6 comparisons, the mean from one bar is within the margin of error for the other one. For these comparisons, we are less sure that the means are different.

Approach and lessons

- Keep it grounded in current events
- Goal should be for every single person to take away something useful
 - 1. Begin with intuitive gist and examples
 - 2. Follow with simple math
 - 3. Recap with gist and examples
- Don't underestimate the degree of math anxiety in this population!

Thank you!

Jessica S Ancker, MPH, PhD Center for Healthcare Informatics and Policy Weill Cornell Medical College jsa7002@med.cornell.edu

Weill Cornell Medical College

